1. Project Description
1.1. This project work is to restore fuel dispenser and fuel transaction system at the U.S. Embassy in Djibouti per this Scope of Work.
1.2. Decommissioning and dismantling of existing fuel dispenser system
1.3. Installation of new fuel dispenser system with sun protection shade
1.4. Installation of fuel transaction system with software and license.
1.5. Providing all accessories required for the system full operation.

2. General Requirements
2.1. Material shipped into Djibouti for this project may be brought in duty free.
2.2. The Contractor must pay for transportation of all Contractor purchased material to the site and the U.S. Embassy will provide a tax exoneration certificate for customs.
2.3. Packaging and Marking
 U.S. Embassy Djibouti
 Lot 350 - B Haramous
 B.P. 185
 Republic of Djibouti
2.4. Contractor will provide airway and shipping bills to the Department of State Procurement and Shipping group for exoneration of duty on material used on this project.
2.5. All costs associated with shipping, transportation to the Embassy, and movement through customs is the responsibility of this contractor.
2.6. Security
 2.6.1. A list of employees who will work on this project, to include names (as shown on ID), and ID numbers must be submitted to the COR within one (1) week of the Notice to Proceed (NTP).
 2.6.2. Information on any vehicles which must come onto the Embassy Compound as part of this work must be submitted to the COR. This information is to include VIN number, license plate number, vehicle description, and color and must be submitted to the COR within one (1) week of the NTP.
2.7. Tools
 2.7.1. All tools must be provided by the contractor.
 2.7.2. All tools must be taken off-site every day or stored in a container at the end of the workday.
2.8. Contractor Supplied Personnel Technical Qualifications
 2.8.1. Qualified Electrical And Phone/Data Labor
2.8.2. Contractor shall have a Building Industry Consulting Service International (BICSI) certified technician for installation of the phone/data work and this technician must be on site during all phone/data work.

2.8.3. Contractor shall have a U.S. Journeyman electrical certification for installation of all electrical work.
 2.8.3.1. The name and validation of the certificate must be submitted with the bid.
 2.8.3.2. The journeyman electrician must be on the job site at all times when electrical work is being performed.

2.8.4. Contractor’s journeyman electrician must have a current OSHA 30 hour training certification.
 2.8.4.1. All personnel used in the performance of the electrical work shall be licensed and qualified electricians or electrical professionals as recognized by at least one U.S. State or local jurisdiction.
 2.8.4.2. At least one team member must have 10 or more years of applicable electrical experience in the United States.
 2.8.4.3. Resumes for all proposed team personnel detailing their experience MUST be submitted with the Cost Proposal or it will not be considered.
 2.8.4.4. Similar installation experience must be clearly shown on all resumes submitted.
 2.8.4.5. Equipment manufacturer technicians (factory representatives) are exempt from this requirement and may supplement but not replace the U.S. staff.

2.8.5. Electrical Installation Labor
 2.8.5.1. All contractor-provided electrical installation labor furnished under this task order and the electrical tasks to be completed thereto shall be executed only by journeyman and master level tradespersons, licensed to the trade which he/she practices.
 2.8.5.2. Equipment manufacturer technicians (factory representatives) are exempt from this requirement and may supplement but not replace the U.S. staff and must be under constant direction and supervision from licensed personnel.

2.8.6. Mechanical Installation Labor
 2.8.6.1. All contractor-provided mechanical installation labor furnished under this task order and the mechanical/piping tasks to be completed thereto shall be executed only by journeyman and master level tradespersons, licensed to the trade which he/she practices.
 2.8.6.2. Equipment manufacturer technicians (factory representatives) are exempt from this requirement and may supplement but not replace the licensed
journeyman staff and must be under constant direction and supervision from licensed personnel.

2.8.7. Trade Licenses

2.8.7.1. All professional tradesmen licenses for Contractor personnel shall be current and valid at the time of COR review and shall be maintained and remain current and valid for the complete duration of the project execution.

2.8.8. Use of Non-Licensed Labor

2.8.8.1. Contractor use of non-licensed electrical laborers, helpers, etc. to execute, plan, lay out, or otherwise direct the execution of the electrical work activities under this task order is not allowed.

2.8.8.2. Local hired labor shall not perform functions beyond manual labor such as debris removal and must be directly managed and supervised by the contractor.

3. Safety

3.1. Contractor must submit with the bid, a Company Safety Plan including a specific Safety Plan tailored to this project to include an Activity Hazard Analysis (AHA).

3.2. All safety plans must conform to USACE (Army Corps of Engineers) Safety and Health Manual EM-385.

3.3. General. The contractor shall provide and maintain work environments and procedures which will safeguard the public and Government personnel, property, materials, supplies, and equipment exposed to contractor operations and activities; avoid interruptions of Government operations and delays in project completion dates; and, control costs in the performance of this contract. For these purposes, the contractor shall:

3.3.1. Provide appropriate safety barricades, signs and signal lights;

3.3.2. Comply with the standards issued by any local government authority having jurisdiction over occupational health and safety issues; and,

3.3.3. Ensure that any additional measures the contracting officer determines to be reasonably necessary for this purpose are taken.

3.3.4. For overseas construction projects, the contracting officer shall specify in writing additional requirements regarding safety if the work involves:

3.3.4.1. Scaffolding;

3.3.4.2. Work at heights above two (2) meters;

3.3.4.3. Trenching or other excavation greater than one (1) meter in depth;

3.3.4.4. Earth moving equipment;
3.3.4.5. Temporary wiring, use of portable electric tools, or other recognized electrical hazards. Temporary wiring and portable electric tools require the use of a ground fault circuit interrupter (GFCI) in the affected circuits; other electrical hazards may also require the use of a GFCI;

3.3.4.6. Work in confined spaces (limited exits, potential for oxygen less than 19.5 percent or combustible atmosphere, potential for solid or liquid engulfment, or other hazards considered to be immediately dangerous to life or health such as water tanks, transformer vaults, sewers, cisterns, etc.);

3.3.4.7. Hazardous materials—a material with a physical or health hazard including but not limited to, flammable, explosive, corrosive, toxic, reactive or unstable, or any operations which creates any kind of contamination inside an occupied building such as dust from demolition activities, paints, solvents, etc.; or

3.3.4.8. Hazardous noise levels.

3.4. Records. The contractor shall maintain an accurate record of exposure data on all accidents incident to work performed under this contract resulting in death, traumatic injury, occupational disease, or damage to or theft of property, materials, supplies, or equipment. The contractor shall report this data in the manner prescribed by the contracting officer.

3.5. Subcontracts. The contractor shall be responsible for its subcontractors' compliance with this clause.

3.6. Written program. Before commencing work, the contractor shall:

 3.6.1. Submit a written plan to the contracting officer for implementing this clause. The plan shall include specific management or technical procedures for effectively controlling hazards associated with the project; and,

 3.6.2. Meet with the contracting officer to discuss and develop a mutual understanding relative to administration of the overall safety program.

3.7. Notification. The contracting officer shall notify the contractor of any non-compliance with these requirements and the corrective actions required. This notice, when delivered to the contractor or the contractor's representative on site, shall be deemed sufficient notice of the non-compliance and corrective action required. After receiving the notice, the contractor shall immediately take corrective action. If the contractor fails or refuses to promptly take corrective action, the contracting officer may issue an order suspending all or part of the work until satisfactory corrective action has been taken. The contractor shall not be entitled to any equitable adjustment of the contract price or extension of the performance schedule on any suspension of work order issued under this clause.
4. Scope of Work

4.1 VEHICULAR FUEL DISPENSERS

A. Basis of design: Bennett Fleetmaster 3122SNM-SLLS2 or approved equal.

B. Description: UL listed double product double hose, fuel dispenser for commercial and industrial applications, ready to operate with card and key-lock systems.

C. Sunshade: factory provided or custom fit. The sunshade shall stand 100KPH wind speed and properly fit to protect the fuel dispenser from the sun.

D. Features:
 1. 2,000,000 Gallon Mechanical Totalizer;
 2. Four-piston meter;
 3. Electric and manual resets;
 4. 1 inch diameter hose outlet with reducer, 19 mm (¾ inch) by 12-foot-long hose with automatic nozzle.
 5. Sturdy hose hanger hook;
 6. Field wiring terminal strip in ballast box;
 7. Clear acrylic dial face inserts.
 8. Brushed stainless steel top and sides;
 9. White dial face covers;
 10. Lighted dial face;
 11. Stainless steel lower doors;
 12. Satellite internal pipe connection;
 13. Field installed hose retriever;
 14. Nozzle – OPW 11A, or approved equal, 19 mm by 19 mm (¾ inch by ¾ inch) swivel;
 15. Hose breakaway – OPW #66 with 230 mm (9 inch) whip hose, or approved equal;
 16. Safety valve – EBW 38 mm (1½ inch) double poppet or approved equal. Cast iron zinc-plated body and adapter; UL listed, conforms to NFPA 30A; Valve shall automatically shut-off in event of a fire or impact;
 17. Provide FRP dispenser sump with stabilizer bars.
 18. Liter measure

4.2 ELECTRONIC FUEL MANAGEMENT SYSTEM FOR VEHICULAR FUEL DISPENSING

A. Basis Of Design: Petro Vend System2, with Chipkey Option or approved equal.
B. General:
1. The system shall be manufactured using current microprocessor technology.
2. The system shall be designed to offer a wide variety of operational modes and to provide maximum versatility without special programming or engineering changes. Ease and economy of expansion shall also be a prerequisite of the proposed system.
3. The system shall be capable of operating as a stand-alone fuel management system. It shall also have the capacity of interfacing with a variety of data processing equipment. The data processing equipment may be located on-site or remotely. In the remote mode, all commands and functions normally performed on-site through the local data terminal shall be executable remotely.
4. The system shall be UL listed, and shall comply with all other necessary, applicable local and national standards. The system shall comply with all applicable Federal Communications Commission (FCC) requirements.
5. The system shall provide self-test and diagnostic utilities for start-up and troubleshooting.
6. The system shall have a minimum of a one (1) year parts warranty.
7. Equipment manufacture shall be conducted in a prescribed manner within conditions controlled by an ISO (9001) Certified Quality System.

C. System Overview:
1. The purpose of the system shall be to control dispensing equipment and provide accurate accounting of all fuel and related products being dispensed.
2. The system shall record data for each transaction in non-volatile memory and on the journal printer (see sec. 4.03 for specific details).
3. The system shall have the capability of user access by: magnetic stripe card, hole-punched (optically coded) card, multi-programmable memory key, and/or manual entry of numbers via the keyboard. Note: All references to cards or card users in this document shall be interpreted to include any of these listed access methods.
4. Access to products shall be restricted to people holding valid cards and who perform a predetermined series of data entry operations.
5. An internal electronic file shall hold data for each card (see sec. 4.01 for specific details).
6. The authorized operator shall be able to check and/or change system operating parameters, as well as card and account data.
7. All system commands shall be menu-driven with on-screen "help" support for explanation of all functions. A single line command mode should also be available.

D. System Components:
1. The Fuel Island Terminal (FIT) shall be contained in a weatherproof cabinet. A
pedestal for mounting the FIT shall be standard equipment. The FIT shall include the following standard features:

a. An easy-to-read, backlit, 2-line x 16-character, alphanumeric liquid crystal display (LCD).
 1) This display shall be readable in bright sunlight.
 2) The system shall also be capable of being optionally equipped with a 3in. x 5in. backlit, graphic liquid crystal display (LCD).
 3) An optional 1 line x 40-character display shall also be available.

b. A 12-key metal keyboard with audible (tone) and tactile (keys move when pressed) feedback.

c. An "emergency stop" button to facilitate immediate termination of fueling in case of an emergency.

d. Each Fuel Island Terminal (FIT) shall be able to house up to 8 relays (1 per hose). Each FIT shall be able to selectively access up to 32 hoses controlled by other FITS.

e. The Fuel Island Terminal (FIT) shall have the capability of being equipped with 2 different card/key reading devices to facilitate a combination of cards and/or keys. Any combination of the following devices shall be available:
 1) Push/pull magnetic card reader
 2) Motorized magnetic card reader
 3) Optical card (hole-punched) reader
 4) Multi-programmable read/write key reader

f. The Fuel Island Terminal (FIT) shall be capable of being equipped with an internal receipt printer. The receipt printer shall use plain paper and have an integral paper cutter.

2. The Fuel Site Controller (FSC) shall have the capacity to connect up to 4 FIT units. A fully expanded system shall be able to control 32 hoses simultaneously. Both mechanical and electronic pumps shall be controllable by the system.

3. Communication protocol between the FSC and the FIT's shall be RS485. The maximum wiring distance between the FSC and any FIT shall be 5000 feet.

4. The system shall have two RS/232 ports for communication. One shall be used to directly interface to an ASCII terminal, personal computer or mainframe computer, which is capable of performing ASCII communication. One of these devices shall be required to configure the system and generate reports.

5. The system shall have, as standard equipment, a 5 x 9 pin dot-matrix bi-directional journal printer (which would be located near the FSC) to make hard copies of transaction data and reports. The printer shall be capable of operating at 180 cps (characters per second). The printer shall use standard 216 mm x 280 mm (8 ½ inch x 11 inch) pin-feed paper and shall be capable of printing on 1, 2, or 3 part paper. The system shall be capable of operation with or without
the journal printer.

E. System Capabilities and Features:

1. Card/Key File Memory: The system's memory shall be flexible to maximize the amount of card records and transaction records that can be stored, based on the data stored for each card record. The system shall allow the operator to determine what data is stored for each card record. There shall be 3 incremental memory upgrades to increase the amount of storage from the standard configuration of 256 Kbytes to a maximum of 2 Megabytes. The following chart indicates the typical ranges for card record and transaction record storage for each of the memory configurations:

<table>
<thead>
<tr>
<th>Memory Size</th>
<th>Number Of Transactions</th>
<th>Number of Cards Min. data/card</th>
<th>Number Of Cards Max. data/card</th>
</tr>
</thead>
<tbody>
<tr>
<td>256K</td>
<td>100</td>
<td>11,197</td>
<td>3,149</td>
</tr>
<tr>
<td></td>
<td>1,000</td>
<td>6,397</td>
<td>1,799</td>
</tr>
<tr>
<td>512K</td>
<td>100</td>
<td>25,761</td>
<td>7,245</td>
</tr>
<tr>
<td></td>
<td>2,000</td>
<td>12,961</td>
<td>3,645</td>
</tr>
<tr>
<td>1 Meg</td>
<td>100</td>
<td>54,888</td>
<td>15,437</td>
</tr>
<tr>
<td></td>
<td>5,000</td>
<td>28,754</td>
<td>8,087</td>
</tr>
<tr>
<td>2 Meg</td>
<td>100</td>
<td>113,142</td>
<td>31,821</td>
</tr>
<tr>
<td></td>
<td>10,000</td>
<td>60,342</td>
<td>16,991</td>
</tr>
</tbody>
</table>

2. The system shall be capable of storing the following data for each card record:
 a. Card/Key Number (19 digits)
 b. Card/Key Type - Single, Driver, Vehicle
 c. Status - Valid or Invalid
 d. Account Number (0 - 9999)
 e. Expiration Date - NW/DD/YY
 f. Monthly Allocation - $NNNNNN.NN
 g. Daily Allocation - $NNNNNN.NN
 h. Misc. Keyboard Entry - Off/On
 i. Personal Identification Number PIN (0 - 6 digits)
 j. Current Odometer. (6 digits)
 k. Odometer Reasonability Code (up to 15 different levels)
 l. Pump Restriction (up to 15 different levels)
 m. Quantity Restriction Level - (up to 15 different levels)
 n. Driver Name (9 characters)
 o. Language Code (1 digit)
 p. Warning odometer (6 digits)
q. No fuel odometer (6 digits)
r. Daily limit (1 digit)
s. Upper and lower range (2 digits, 4 total)
t. Method (1 digit)
u. Card medium and ChipKey modification flags (8 digits).

3. Account File Memory: The system shall have, as standard, the capacity to store 10,000 account records. Each record shall contain:
 a. Account Number (0 - 9999)
 b. Status - Valid or Invalid
 c. Account Discount (0 - 99 percent)
 d. Expiration Date - MMOD/YY
 e. Monthly Allocation - $NNNNNN.NN
 f. Daily Allocation - $NNNNNN.NN
 g. Quantity Restriction Level (up to 15 different levels)
 h. Pump Restriction (up to 15 different levels)
 i. Account Name (9 characters)

4. Transaction Memory: The system shall have, as standard, the capacity to store transactions in non-volatile RAM. (See sec. 4.01 for capacities). Each transaction shall contain:
 a. Sequential Transaction Number
 b. Transaction Termination Code (i.e., Normal, Quantity Restriction, etc.)
 c. Account Name
 d. Driver Card Number
 e. Vehicle Card Number (omitted for single card transactions)
 f. Date and Time
 g. Fuel Type
 h. Pump Number
 i. Quantity Dispensed
 j. Unit Price
 k. Total Transaction Extended Monetary Amount
 l. Odometer Entry
 m. Misc. Keyboard Number
 n. Consumption Factor - Miles per Gallon or Liters/100km
 o. Receipt Status - Issued/Not Issued

5. Fuel Type (Product) Identification: The operator shall be able to specify and store the price and description of up to 16 products.

6. Miscellaneous Entry Field Capacity: The system shall be capable of recording a field of up to 10 digits entered at the keyboard by the user.

7. Clock/Calendar: The system shall keep an accurate accounting time and date, even in the event of a power failure. The date and time formats shall be user selectable (i.e., 12/24 hr, MMM/DD or DD/MMM). The system shall be able to automatically correct for daylight savings time.
8. Fuel Type Restriction: The operator shall be able to create a table of up to 15 combinations, or levels, of authorized products. The operator shall then be able to assign a level number to each individual user or account group.

9. Quantity Restriction: The operator shall be able to create a table of 15 quantity restriction levels. The operator shall then be able to assign a level number to each individual user or account group to limit the amount of fuel dispensed for each transaction. By either quantity or monetary value.

10. Open/Close: The system shall have the capability of being placed in either an "Open" or "Closed" mode by authorized personnel. Fueling shall not be allowed in the "Closed" mode.

11. Single or Dual Card/Key Operation: The operator shall be able to program the system for cardless (manual entry via keyboard), single and/or dual card/key operation.

12. Personal Identification Numbers (PIN): The system shall have the ability to recognize and verify up to a 6-digit Personal Identification Number (PIN) when entered at the Fuel Island Terminal. The operator shall have a choice of methods to select PIN's for each individual user:
 a. Individually program a PIN number for each user.
 b. Automatically generate a random PIN number.

The system shall be able to invalidate a card after 3 consecutive incorrect PIN entries.

13. Pump Configuration: The operator shall be able to program and store operating parameters for each hose position (up to 32). These parameters shall include:
 a. Pump Number: A pump number from 0 - 99 to be assigned to any available relay position.
 b. Fuel Type Number: The Fuel Type number (1 - 16) and operator-selectable description of the product being dispensed by the pump.
 c. Tank Number: The tank number (1 - 8) to be used by the inventory program.
 d. Quantity of Fuel per Transaction Limit.
 e. Total Transaction Time-Out: The system shall be able to monitor a total transaction time, programmable for each hose between 1 - 999 seconds (an entry of 'O' shall allow unlimited time). The system shall turn off the pump if that time is exceeded.
 f. Pump Handle Time-Out: The system shall monitor the time between authorization and activation of the pump handle, which is programmable for each hose between 1 - 999 seconds (an entry of 'O' shall allow unlimited time). If the device is selected but the pump handle not activated by the user before the end of this period, the transaction shall be terminated.
 g. First Pulse Time-Out: The system shall monitor the time between the activation of the pump handle and the receipt of the first pulse, which is
programmable for each hose between 1 - 999 seconds (an entry of 'O' shall allow unlimited time). The transaction shall be terminated if that time exceeds the programmed parameter.

h. Missing Pulse Detector (MPD) Time-Out: A Missing Pulse Detector" (MPD) shall be built into the circuit controlling each pump so that all power shall be removes from the pump if the pulses indicating fuel flow are not received at regular intervals. The length of the acceptable interval between pulses shall be 'programmable for each hose between 1 - 999 seconds (an entry of 'O' shall allow unlimited time).

i. Pulser Divide Rate: The operator shall be able to program the system to assign 1 - 9999 pulses per unit of fuel measure.

j. Pump Deactivation Sentry: The operator shall be able to program the system to automatically place a pump "out of service" after 3 consecutive "zero quantity" fueling transactions occurring from that pump (zero quantity transactions may be an indication of a pump or pulser hardware failure). An "out of service", or other operator defined message, pump shall be indicated on the Fuel Island Terminal (FIT) display. The system shall have the flexibility to disable this function for one or more particular pumps.

k. Messaging: The system shall have the capability of displaying up to 100 different, operator-defined messages at the Fuel Island Terminal (and/or printed on the receipt) for specific Card/Key or Account numbers. The system shall have the capability to automatically clear messages after an operator - determined time period.

14. Card/Key Status: The system shall have the capacity to allow driver and/or vehicle cards/keys to be declared valid or invalid by authorized personnel.

15. Site Name: 'Me system shall have the provision to program a 12-character site name into memory. This is used when the system is accessed by modem.

16. Pump and Product Totals: The system shall have the capacity to accumulate individual pump and product totals as well as track each pump totalizer. The operator shall be able to enter an initial pump totalizer number into the system for each pump. This number will be incremented by the system when product is dispensed and can be checked against the pump's totalizer to determine the accuracy and working status of the pulser.

17. Inventory Control: 'Me operator shall be able to program into system memory up to 8 tank inventory balances. The inventory balance for each product shall be reduced automatically as each fueling transaction occurs. The operator shall be able to change this number to accommodate fuel deliveries. The system shall be capable of 'displaying, on demand, the current inventory amount for each individual tank.

18. Manual Operation: The operator shall have the ability to place pumps in a "manual" mode, allowing manual operation of the pumps (without entering a rare Id). This can be done directly, through the programming terminal, or
remotely by modem.

19. Display Prompts: All Fuel Island Terminal display prompts shall be programmable by the operator. The system shall use a set of standard default prompts at start-up.

20. Dual Language: The system shall have the capability of storing 2 sets of Fuel Island Terminal (FIT) display messages in 2 different languages or 2 separate sets of display prompts (i.e., Enter odom: as opposed to Enter Hubmeter). When a card/key is read, the system shall display all messages in the correct language for that user.

21. Password: The operator shall be able to program a 6-character, alphanumeric password that must be entered correctly to gain access to the system either directly or via phone.

22. Pump Handle Monitor: The system shall monitor the pump handle to ensure that it was turned to the "OFF" (reset) position before the pump can be reactivated. The operator shall be able to disable this feature.

23. Pass-through Communications Port: The system shall have the capability of passing modem communications through to another RS/232 device.

24. Memory Key Report Features:

 a. The memory key shall be a read/write device.
 b. The memory key shall be made of a highly durable plastic, able to withstand daily usage and handling.
 c. The memory key shall be static-resistant.
 d. The memory key shall have several methods of responding to incorrect odometer or hour readings.
 e. The memory key shall have the ability to be coded for a minimum odometer or hour entry.
 f. The memory key shall have the ability to be coded for a maximum odometer or hour entry.
 g. The memory key shall have the ability to be encoded a minimum of 10,000 times.
 h. The memory key shall contain the last correct odometer entry and shall have the ability to download odometer entry to any key reader.
 i. The memory key shall have the ability to be programmed with a warning odometer for servicing purposes.
 j. The memory key shall have the ability for a "no fuel" odometer to prevent a vehicle from not being serviced.

25. Memory Key with Multi-Site Odometer Reasonability: The system shall have the capability of storing the last odometer reading into the memory key. Using the stored reading, the system shall determine if the current entry is "reasonable" (within the specified range) before allowing access to fuel. The Memory Key shall also log the number of unreasonable odometer entries and the number of transactions per day. The system shall also have the ability to prompt fuelers
with service warnings and to prevent fueling when odometer entries meet or exceed programmed levels. The system shall check for a lower and an upper value for the odometer reasonability range. The System shall allow for 5 different methods of odometer response to three sequential incorrect entries.

a. **Method 0:** Method 0 shall be a "bypass". All odometer entries are defined by the system as reasonable. Fueling shall always be allowed.

b. **Method 1:** This shall be the most restrictive method: after three bad odometer entries, the Memory Key shall be invalidated and fueling shall be disallowed for the user. The system shall not recognize the invalidated Memory Key until it is reset (reprogrammed).

c. **Method 2:** The second method shall log unreasonable odometer entries in the same ways as Method 1. After the third bad entry, the Memory Key shall be flagged on the report and on the transaction receipt by printing '< < <' in the odometer field. Fueling shall be allowed but only for tire current transaction.

d. **Method 3:** Method 3 shall always allow fueling, and bad entries shall be logged in two ways. If all three bad entries are different, the transaction is flagged on the transaction receipt and on the report by printing '====' in the odometer field. The odometer reading stored in the Memory Key shall not be updated, but the bad entry log in the Memory Key shall be reset to zero. The user must enter three more bad odometer readings for his transaction to be flagged again. If two or three of the bad entries are the same, '>>>' shall be printed in the odometer field and the odometer value in the Memory Key shall be updated.

e. **Method 4:** Method 4 shall log bad entries in two ways. Fueling shall always be allowed. If all three bad entries are different, the transaction shall be flagged on the transaction receipt and on the report by printing '===' in the odometer field. The odometer reading stored in the Memory Key shall not be updated, but the bad entry log in the Memory Key shall be reset to zero. The user must be required to enter three or more bad readings for his transaction to be flagged again.

If two or three bad odometer entries are the same, the current odometer entry shall be printed in the odometer field and the odometer value in the Memory Key shall be updated. The bad entry counter shall be automatically reset to zero after a good odometer entry.

26. **Account Group Discount:** The system shall have the capability to assign a discount, either in percent (0 - 99 percent) or in cents per gallon/liter to each account. That discount shall be reflected on the price of each transaction.

27. **Memory Key Encoding Method:** The FIT shall be able to encode the Memory Key in 2 methods.

a. **Method 1:** By an authorized user placing the FIT into the manual encoding mode. This mode would utilize the keyboard to program all or any of the
4.3 VEHICULAR FUEL DISPENSING SYSTEM REPORTING:

1. The system shall have the capability to generate reports. The operator shall be able to access these reports, on-demand, via the data terminal. The system shall be able to display or print report data at the user's discretion.

2. System Information Reports:
 a. System Status Report
 b. Fuel Island Terminal (FIT) Status
 c. Pump Configuration Data

3. Transaction Data Report
4. Card/Key Information Report
5. Account Information Report
6. Pump Totals and Totalizers Report
7. Inventory Report
8. Product Totals Report
5. AFTER IMPLEMENTATION

5.1. Provide 1 year installation warranty. The warranty period shall be one year starting from the commissioning and handover signed date.

6. POINTS OF CONTACT

6.1. CONTRACTING OFFICER: The Contracting Officer (CO) shall be the Embassy General Services Officer, James Jewett (jewettj@state.gov)

6.2. CONTRACTING OFFICER REPRESENTATIVE (COR) shall be the Embassy Facility Building Engineer, Elias Yirdaw (YirdawEG@state.gov)

7. PROPOSAL SUBMITTAL: proposal shall be submitted to Procurement Group, U.S. Embassy Djibouti (DjiboutiProcurement@state.gov)

END SOW